
Software Development II Course Information

Software Development Fundamentals I & II introduces learners to the core components of

writing programs. From a basic introduction to using the software development interface

to the fundamentals of data structures, data types and variables. The course introduces the

core concepts of object-oriented programming and provides an important primer for any

future career in the field.

Learning Outcomes for Software Development Fundamentals II
1. Understanding advanced object-oriented programming techniques.

2. Understanding generic types and methods and being able to use them appropriately.

3. Be able to query, update and delete data objects and data structures from a data

source.

4. Create and implement delegates in an application.

5. Basic understanding and application of exception handling.

6. Incorporate input, output and file handling techniques while developing applications.

7. Know how to tier applications for code reusability.

Admission Requirements for Software Development II
Minimum admission requirement is a National Senior Certificate (NSC) or Senior Certificate

(SC) or a National Certificate Vocational (NCV).

Applicants must also have completed Programming Fundamentals I or successfully passed

an admission assessment. A portfolio of an applicant’s software development experience

could also be used to waiver the admission requirements.

Course Content for Software Development II
1. Object Oriented Programming

 Constructors and Finalizes

 Constructors

 Static Constructors

 Destructors

 Operators, Overloading and Conversions

 Operators

 Conversions

 Inheritance

 Polymorphism and Virtual Members

 Encapsulation

 Abstract Classes

 Interfaces

 Delegates

 Functional Programming

 What are delegates?

 Delegate Types and Delegate Instances

 Invoking Delegates

 Events

 How events work?

 Raising Events

 Add and Remove Accessors

 Detach you event handlers

2. Generic Types and Methods

 Generics

 Making the Case for Generics

 Building a Generic Class

 Using a Generic Class

 Defining Generic Methods

 Leveraging Generic Constraints

 Lists

 Declaring and Populating a Generic List

 Using Collection Initializers

 Initializing a List of Objects

 Retrieving an Element from a Generic List

 Iterating Through a Generic List

 Types of C# Lists

 Dictionaries

 Declaring and Populating a Generic Dictionary

 Using Collection Initializers

 Initializing a Dictionary of Objects

 Retrieving an Element from a Generic Dictionary

 Iterating Through a Generic Dictionary

 Types of C# Dictionaries

 Interfaces

 Making the Case for Using Interfaces

 Built-in Generic Collection Interfaces

 Using an Interface as a Parameter

 Using an Interface as a Return Type

 Returning IEnumerable T

 Defining an Iterator with Yield

 Hash Set

 Introducing HashSet<T>

 HashSet<T> and Uniqueness

 HashSet<T> and Comparers

 Comparing Elements and SetEquals()

 Set Comparisons and Subsets

 SortedSet<T>

 Link Lists

 Understanding Linked Lists

 LinkedList<T> and LinkedListNode<T>

 Stack<T>

 Queue<T>

 Enumerators

 Enumerators and IEnumerator<T>

 The foreach Loop

 Why Don't Collections Enumerate Themselves?

 Modifying While Enumerating

 Writing Your Own Enumerator

 Enumerable Covariance

3. Language Integrated Query Essentials

 LINQ by example

 Query Expressions

 Building a LINQ Query: Query Syntax

 Building a LINQ Query: Method Syntax

 Using Lambda Expressions

 LINQ and Collections

 Stand Query Expressions

4. Exceptions

 Introduction to Exceptions

 Exception Handling and Throwing Exception

 Working With IO

5. Object Relation Mapping

 Connecting to a data source

 Retrieving data from a data source

 Writing data to a data source

 Deleting data from a data source

 Querying Data from a data source

6. Building Tiered Applications

 Why is application design important?

 Separating logic into a different layer

7. File Handling

 Open Files

 Read, Write data

 Streamreader, Streamwrite, Binaryreader, Binarywriter

 Use Memory Streams

 File, Memory, Buffered, Network, Pipe, Crypto

 Close Files

8. Building an application using technologies covered in this module

	 Use Memory Streams
	 File, Memory, Buffered, Network, Pipe, Crypto
	 Close Files

