
Software Development I Course Information

Software Development Fundamentals I & II introduces learners to the core components of

writing programs. From a basic introduction to using the software development interface

to the fundamentals of data structures, data types and variables. The course introduces the

core concepts of object-oriented programming and provides an important primer for any

future career in the field.

Learning Outcomes for Software Development Fundamentals I
1. Sound knowledge of program flow control, data types and variables.

2. Fundamental knowledge of methods, functions, and argument parsing.

3. Apply functional decomposition to break a program into smaller pieces.

4. Fundamental knowledge of data structures.

5. Write applications to traverse data structures using a programming language.

6. Applying object-oriented principles to code in a programming language.

7. Writing automated unit tests and understand the rules of test-driven development.

8. Using version control to manage source code when developing applications.

Admission Requirements for Software Development I
Minimum admission requirement is a National Senior Certificate (NSC) or Senior Certificate

(SC) or a National Certificate Vocational (NCV)

Course Content for Software Development I
1. Introduction to A Development Platform

 Introducing the Programming Language

 Setting up the Development Environment

 Understanding the IDE

 Language Essentials

 Keywords

 Primer on Data Types

2. Built in Types & Logical Operators

 Basic types

 Data types

 Data Types

 String Handling

 Classes

 Fields

 Properties

 Constructors and Finalizes

 Constructors

 Static Constructors

 Destructors

 Arrays

 Declaring and Populating an Array

 Using Collection Initializers

 Retrieving an Element from an Array

 Iterating Through an Array

 Using Array Methods

 Expressions and Operators

 Conditional Operators

 Operator Result Types

 Relational Operators

 Arithmetic Operators

 Type Conversions

3. Simple Flow Control

 Expression Statements

 Selection Statements

 Iteration Statements

4. Methods & Functions

 What is a method/function?

 Creating a method and a function

 Return Type and Parameters

 Improving Parameters in the Method Signature

 Named Arguments

 Defining Enumerated Parameters

 Optional Parameters

 ref and out Parameters

 Overloading and Extension Methods

5. Primer on Types and Objects

 Implicit vs. Explicit Conversions

 Creating objects with a new operator

 Different way to initialise objects

 Invocation Expression

 Member Access Types

 Classes and Constructors

6. Basics of Exception and Resource Management

 Exception Handling

7. Advance Types

 Types Revisited

 Classes vs. Structs

 Type Members

8. Unit Testing

 Unit tests steps

 Setup of unit test

 Asserts

 Rules of Test-Driven Development

 Pair Programming

9. Version Control

 Adding version control to a project

 Committing Code

 Push/Pull Requests

 Cloning A Project

 Using online repositories

 Handle conflicts with version control.

 Branching

10. Building an application using technologies covered in this module

	 Type Conversions
	3. Simple Flow Control
	 Expression Statements
	 Selection Statements
	 Iteration Statements
	4. Methods & Functions
	 What is a method/function?
	 Creating a method and a function
	 Return Type and Parameters
	 Improving Parameters in the Method Signature
	 Named Arguments
	 Defining Enumerated Parameters
	 Optional Parameters
	 ref and out Parameters
	 Overloading and Extension Methods
	5. Primer on Types and Objects
	 Implicit vs. Explicit Conversions
	 Creating objects with a new operator
	 Different way to initialise objects
	 Invocation Expression
	 Member Access Types
	 Classes and Constructors
	6. Basics of Exception and Resource Management
	 Exception Handling
	7. Advance Types
	 Types Revisited
	 Classes vs. Structs
	 Type Members
	8. Unit Testing
	 Unit tests steps
	 Setup of unit test
	 Asserts
	 Rules of Test-Driven Development
	 Pair Programming
	9. Version Control
	 Adding version control to a project
	 Committing Code
	 Push/Pull Requests
	 Cloning A Project
	 Using online repositories
	 Handle conflicts with version control.
	 Branching

